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The study of natural scene statistics has served as a powerful framework for understanding vision and neural coding in the last several 
decades. Critical to this framework are datasets of natural scenes that have aligned multi-modal visual information, including luminance, 
color, stereoscopic disparity, movement, and three-dimensional (3D) information, which we are acquiring with support of DURIP grants 
from ARL/ARO and AFOSR. With support of this STIR grant, we performed statistical analyses on these datasets and developed a set of 
probabilistic models, referred to as probabilistic visual codes (PVCs). The PVCs are probabilistic models of static and dynamic, 2D and 3D 
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Scientific progress and accomplishments 


(1) Foreword


With support of this STIR grant, we made significant progress in analyzing the novel dataset we acquired recently. We 
developed a set of probabilistic visual codes (PVCs) and natural scene structures (NSSs). The PVCs are probabilistic models of 
static and dynamic, 2D and 3D natural scene patches in center-surround configurations. The NSSs, which can be encode by 
PVCs, provide a classification of natural scene patches. We examined the statistics of PVCs and NSSs and started to explore 
ways to relate PVCs to neural encoding and visual learning and applications of PVCs and NSSs to visual saliency, natural 3D 
vision, scene vision, visual learning, visual memory, object perception, and dynamic scene understanding.  


We are in the process of preparing 3 manuscripts for journal submission. 


(3) List of Appendixes, Illustrations and Tables


The attached PDF file contains the following figures and tables. 


Fig. 1. Image registration.


Fig. 2. ICs of natural scenes.


Fig. 3. C-NonC RFs.


Fig. 4. 2D-3D RFs.


Fig. 5. Binocular 2D-3D RFs, Sp-Tm C-NonC RFs, and Sp-Tm 2D-3D RFs.


Fig. 6. Geometry of PVCs.


Fig. 7. Visual saliency predicted by C-NonC RFs.


Fig. 8. Examples of 3D natural scenes.


Fig. 9. ICs of 3D natural scenes.


Fig. 10. Procedure for compiling NSSs.


Fig. 11. Examples of NSSs.


Fig. 12. Distribution of frequencies of NSSs.


Fig. 13. Patterns of co-occurrences of pairs of NSSs. 


Fig. 14. Pyramid representation and hierarchical Bayesian inference.


Fig. 15. PD of distances in 3D natural scenes.


Fig. 16. Natural 3D vision based on 2D-3D RFs.


Table 1. Performance of models of visual saliency.


Table 2. Performance of a model based on NSSs and other models on scene categorization.


Table 3. Effect of learning on scene categorization.





(4) Statement of the problem studied


Visual systems must inevitably adapt to the statistical characteristics of the natural environment [1-4]. Statistics of natural 
scenes have been used to account for many aspects of human natural vision [3]. The PI's works have rationalized many long-
standing phenomena of brightness, color, geometrical forms, distance perception, and visual saliency [5-9]. Receptive fields 
(RFs) of simple and complex cells can be learned from natural scenes [10,11]; and the responses of V1 neurons in awake, 
behaving macaques suggest that classical and non-classical RFs form a sparse representation of the visual world [12,13]. More 
recently, neurons in the early visual cortex have been shown to adapt to image statistics very rapidly [14-16] and with great time 
precision at the population level [17], presumably via complex synaptic and network mechanisms [18].


We developed a dictionary of probabilistic visual codes (PVCs), i.e., probability distributions (PDs) of visual variables in static, 
dynamic, 2D, and 3D natural scenes. 


1) A visual feature is a random variable and co-occurs at certain probabilities with other visual features in natural scenes. 


2) These probabilities can be efficiently represented by a set of PDs in terms of independent components (ICs) of natural 
scenes [2].


3) The function of the visual system can be seen as encoding and operating on these PVCs to generate percepts that allow 
routine successful behaviors in the natural environment. 


4) These PVCs can be used to achieve natural vision (e.g., visual saliency, scene vision, visual learning, and natural 3D vision).





(5) Summary of the most important results


Image registration


We model the alignment between any two images of the same scene acquired by our 2D and 3D image systems by a 
displacement, a rotation, a scale transform, and a non-linear mapping. For this purpose, we identify a number of features that 
are roughly uniformly distributed in the images and then find the best alignment (Fig. 1).


A dictionary of PVCs


We develop a dictionary of PVCs by modelling the joint PDs of natural scene patches that have aligned multi-modal visual 
information, including luminance, color, stereoscopic disparity, movement, and 3D information (Figs. 2-5). These PVCs suggest 
that there are joint classical-nonclassical RFs and joint 2D-3D RFs.


Universality of PVCs


There is a universal geometry in PVCs: each PVC is a function of the total distance to hyperplanes in the spaces of 2D and/or 
3D visual features in space and/or time domains and a large set of hyperplanes partition the feature spaces so that any natural 
scene patch is a combination of samples of PVCs (Fig. 6). 


PVCs convey bottom-up visual saliency





We can derive a measure of visual saliency from PVCs. Visual saliency is the perceptual quality that makes some items in 
visual scenes stand out from their immediate contexts [19]. Let P(Tm|Cnt) denote the maximal probability of a target T within 
context Cnt in natural scenes. We can define visual saliency SI of target T in context Cnt as 


SI = log P(Tm|Cnt) - log P(T|Cnt) 


Thus, SI of target T is a summation of the SI given by each of PVCs. This model of visual saliency is a good indicator of human 
gaze in free-viewing of static natural scenes (Table 1 and Fig. 7).


Encoding visual scenes by PVCs


We also propose natural scene structures (NSSs) as basic units of natural scenes. NSSs are patterns of co-occurrences of 
basic features in scene patches (~ a few degrees) and each NSS has a PD that describes its full range of natural variations 
(Figs. 10 and 11). A scene is a sample from a PD of visual scenes in terms of NSSs and their spatial arrangements. NSSs can 
be encoded by populations of PVCs.


Scaling law of NSSs


The frequency distribution of NSSs follows a power law (Fig. 12).


Fine correlational structures of NSSs


Co-occurrences of NSSs have very rich structures and have many patterns, most of which are very different from 1/f spectral [1-
3] (on which many models of early visual processing are based) (Fig. 13).


NSSs and PVCs for scene categorization


NSSs can be used to encode natural scenes to achieve scene categorization (Table 2). This can developed into a new 
framework of scene vision.


NSSs and PVCs for visual learning


The fine structures of NSSs and PVCs provide ample opportunities for learning. Learning modifies the fine structures that 
improve visual discrimination (e.g., camouflage breaking) and recognition (Table 3 where the relative amplitudes of the ICs in 
the NSSs are modified by learning). This can developed into a new framework of visual learning.


3D vision based on NSSs and PVCs


For each NSS, we develop a set of joint 2D-3D RFs. To achieve natural 3D vision, we develop a hierarchical Bayesian 
inference framework based on NSSs and joint 2D-3D RFs (Fig. 14). We find that, in many situations, detailed, accurate 3D 
vision in natural conditions from a single monocular view is achievable based on NSSs and 2D-3D RFs (Fig. 16). This can be 
developed into a new framework of 3D vision.
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Scientific progress and accomplishments  
(1) Foreword 
With support of this STIR grant, we made significant progress in analyzing the novel dataset we 
acquired recently. We developed a set of probabilistic visual codes (PVCs) and natural scene 
structures (NSSs). The PVCs are probabilistic models of static and dynamic, 2D and 3D natural 
scene patches in center-surround configurations. The NSSs, which can be encode by PVCs, 
provide a classification of natural scene patches. We examined the statistics of PVCs and NSSs 
and started to explore ways to relate PVCs to neural encoding and visual learning and applications 
of PVCs and NSSs to visual saliency, natural 3D vision, scene vision, visual learning, visual 
memory, object perception, and dynamic scene understanding.   
We are in the process of preparing 3 manuscripts for journal submission.  

(3) List of Appendixes, Illustrations and Tables 
The attached PDF file contains the following figures and tables.  
Fig. 1. Image registration. 
Fig. 2. ICs of natural scenes. 
Fig. 3. C-NonC RFs. 
Fig. 4. 2D-3D RFs. 
Fig. 5. Binocular 2D-3D RFs, Sp-Tm C-NonC RFs, and Sp-Tm 2D-3D RFs. 
Fig. 6. Geometry of PVCs. 
Fig. 7. Visual saliency predicted by C-NonC RFs. 
Fig. 8. Examples of 3D natural scenes. 
Fig. 9. ICs of 3D natural scenes. 
Fig. 10. Procedure for compiling NSSs. 
Fig. 11. Examples of NSSs. 
Fig. 12. Distribution of frequencies of NSSs. 
Fig. 13. Patterns of co-occurrences of pairs of NSSs.  
Fig. 14. Pyramid representation and hierarchical Bayesian inference. 
Fig. 15. PD of distances in 3D natural scenes. 
Fig. 16. Natural 3D vision based on 2D-3D RFs. 
Table 1. Performance of models of visual saliency. 
Table 2. Performance of a model based on NSSs and other models on scene categorization. 
Table 3. Effect of learning on scene categorization. 
 

(4) Statement of the problem studied 



 

Visual systems must inevitably adapt to the statistical characteristics of the natural 
environment [1-4]. Statistics of natural scenes have been used to account for many aspects of 
human natural vision [3]. The PI's works have rationalized many long-standing phenomena of 
brightness, color, geometrical forms, distance perception, and visual saliency [5-9]. Receptive 
fields (RFs) of simple and complex cells can be learned from natural scenes [10,11]; and the 
responses of V1 neurons in awake, behaving macaques suggest that classical and non-classical 
RFs form a sparse representation of the visual world [12,13]. More recently, neurons in the early 
visual cortex have been shown to adapt to image statistics very rapidly [14-16] and with great time 
precision at the population level [17], presumably via complex synaptic and network mechanisms 
[18]. 

We developed a dictionary of probabilistic visual codes (PVCs), i.e., probability distributions 
(PDs) of visual variables in static, dynamic, 2D, and 3D natural scenes.  
1) A visual feature is a random variable and co-occurs at certain probabilities with other visual 
features in natural scenes.  
2) These probabilities can be efficiently represented by a set of PDs in terms of independent 
components (ICs) of natural scenes [2]. 
3) The function of the visual system can be seen as encoding and operating on these PVCs to 
generate percepts that allow routine successful behaviors in the natural environment.  
4) These PVCs can be used to achieve natural vision (e.g., visual saliency, scene vision, visual 
learning, and natural 3D vision). 
 

(5) Summary of the most important results 
Image registration 

We model the alignment between any two images of the same scene acquired by our 2D and 
3D image systems by a displacement, a rotation, a scale transform, and a non-linear mapping. For 
this purpose, we identify a number of features that are roughly uniformly distributed in the images 
and then find the best alignment (Fig. 1). 
A dictionary of PVCs 

We develop a dictionary of PVCs by modelling the joint PDs of natural scene patches that have 
aligned multi-modal visual information, including luminance, color, stereoscopic disparity, 
movement, and 3D information (Figs. 2-5). These PVCs suggest that there are joint 
classical-nonclassical RFs and joint 2D-3D RFs. 
Universality of PVCs 

There is a universal geometry in PVCs: each PVC is a function of the total distance to 
hyperplanes in the spaces of 2D and/or 3D visual features in space and/or time domains and a large 
set of hyperplanes partition the feature spaces so that any natural scene patch is a combination of 
samples of PVCs (Fig. 6).  
PVCs convey bottom-up visual saliency 

We can derive a measure of visual saliency from PVCs. Visual saliency is the perceptual 
quality that makes some items in visual scenes stand out from their immediate contexts [19]. Let 



 

P(Tm|Cnt) denote the maximal probability of a target T within context Cnt in natural scenes. We 
can define visual saliency SI of target T in context Cnt as  

SI = log P(Tm|Cnt) - log P(T|Cnt)  
Thus, SI of target T is a summation of the SI given by each of PVCs. This model of visual 

saliency is a good indicator of human gaze in free-viewing of static natural scenes (Table 1 and 
Fig. 7). 
Encoding visual scenes by PVCs 

We also propose natural scene structures (NSSs) as basic units of natural scenes. NSSs are 
patterns of co-occurrences of basic features in scene patches (~ a few degrees) and each NSS has a 
PD that describes its full range of natural variations (Figs. 10 and 11). A scene is a sample from a 
PD of visual scenes in terms of NSSs and their spatial arrangements. NSSs can be encoded by 
populations of PVCs. 
Scaling law of NSSs 

The frequency distribution of NSSs follows a power law (Fig. 12). 
Fine correlational structures of NSSs 

Co-occurrences of NSSs have very rich structures and have many patterns, most of which are 
very different from 1/f spectral [1-3] (on which many models of early visual processing are based) 
(Fig. 13). 
NSSs and PVCs for scene categorization 

NSSs can be used to encode natural scenes to achieve scene categorization (Table 2). This can 
developed into a new framework of scene vision. 
NSSs and PVCs for visual learning 

The fine structures of NSSs and PVCs provide ample opportunities for learning. Learning 
modifies the fine structures that improve visual discrimination (e.g., camouflage breaking) and 
recognition (Table 3 where the relative amplitudes of the ICs in the NSSs are modified by 
learning). This can developed into a new framework of visual learning. 
3D vision based on NSSs and PVCs 

For each NSS, we develop a set of joint 2D-3D RFs. To achieve natural 3D vision, we develop 
a hierarchical Bayesian inference framework based on NSSs and joint 2D-3D RFs (Fig. 14). We 
find that, in many situations, detailed, accurate 3D vision in natural conditions from a single 
monocular view is achievable based on NSSs and 2D-3D RFs (Fig. 16). This can be developed into 
a new framework of 3D vision. 
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A visual feature is a random variable and co-occurs at certain probabilities with other visual 

features in natural scenes, denoted as P(T|Cnt) (T: target; Cnt: context). To obtain P(T|Cnt), we 
model the PD of the 2D/3D scenes in the center given the scene patches in the center and the 6 
surrounding circles as shown in Fig. 3a. The scene patch in the center serves as T and scene patches 
in the circles serve as Cnt in P(T|Cnt). We use these notations: [IC2D]: ICs of 2D image patches 
in the center; [ICX]: ICs of 2D image patches in the 6 surrounding circles; [IC3D]: ICs of range 
patches in the center; Im: 2D image; Rm: 3D image; ⊗: filtering by the filters of the ICs; and WC, 
WX, V2D, V3D: weight vectors. 
P([IC2D],[ICX]) and joint C-NonC RFs. We represent P([IC2D],[ICX]) as a product of a set of 
PDs, each of which will have the form 

 (1/Ω)exp(- λ|WC[IC2D⊗Im]+ WX[ICX⊗Im]|α),  

where Ω, λ, and α are positive constants. Each is called a joint classical-nonclassical receptive 
field (C-NonC RF). 20 C-NonC RFs are shown in Fig. 3c. 

We use this approach to obtain several other sets of PVCs, including 2D-3D RFs (Fig. 4), 
binocular 2D-3D RFs (Fig. 5a), spatial-temporal C-NonC RFs (Sp-Tm C-NonC RFs) (Fig. 5b), 
Sp-Tm 2D-3D RFs (Fig. 5c), and binocular Sp-Tm C-NonC RFs and Sp-Tm 2D-3D RFs.  

Fig. 1. Image registration.  (a), Range image of a natural scene; the distance 
is indicated by color-coding. (b), A pair of stereoscopic images of the same 
scene. 
 Fig. 2. ICs of natural scenes. 

Top row: 64 ICs. Bottom row: 
PD of the amplitude of an IC. 
Left column: luminance images 
of natural scenes. Middle 
column: color images of natural 
scenes. Right column: range 
images of natural scenes 
(bright/dark: far/near distance). 
These PDs are generalized 
Gaussian PDs (~exp(-λ|x|∆)). 
For luminance and color images, 
∆=0.5-3.5. For range images, 
∆=0.5-1. 
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Fig. 3. C-NonC RFs. (a), Two 
C-NonC RFs. Left: 
Configuration of RFs (C: target; 
1-6: context). Middle: 
Excitatory (+) and suppressive (-
) component(s) (i.e., ICs). 
Right: PDs of [IC2D] for two sets 
of [ICX]. (b), PD of the weights 
in C-NonC RFs. (c), 20 C-NonC 
RFs. In Figs. 3-6, and 7, there 
are many ICs in each circle and 
only a few ICs with the greatest 
absolute weights are shown. 
 

Fig. 4. 2D-3D RFs. (a), Two 
joint 2D-3D RFs. Left: 
Configuration of RFs (C: 
target; 1-6: context). Middle: 
Excitatory (+) and suppressive 
(-) component(s). Right: PDs 
of [IC3D] for two sets of values 
of [IC2D ICX]. (b), 10 2D-3D 
RFs. The colored patches are 
[IC3D] (red: far; blue: near). (c), 
PD of V3D. (d), PD of V2D. Red: 
PD of V2D for [IC2D]; blue: PD 
of V2D for [ICX]. 
 
 
 
 

Fig. 5. Binocular 2D-3D RFs, Sp-Tm 
C-NonC RFs, and Sp-Tm 2D-3D RFs. 
(a), 10 binocular 2D-3D RFs. (b), 5 Sp-
Tm C-NonC RFs. (c), 3 Sp-Tm 2D-3D 
RFs. In (a)-(c), each block shows an RF, 
the red circle is the target, all the other 
circles are the context, and t is time.  
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Fig. 6. Geometry of PVCs. (a), 4 hyperplanes 
in the space of 3D features (left) are paired with 
4 hyperplanes in the space of 2D features (right) 
in a monocular 2D-3DRF. The paired 
hyperplanes have the same color and are plotted 
along three ICs. (b), PDs of the angles between 
two hyperplanes in C-NonC RFs. Red: target 
feature space. Blue: context's feature space. (c), 
PDs of the angles between two hyperplanes in 
monocular 2D-3D RFs. Red: space of 3D 
features. Blue: space of 2D features. Most 
hyperplanes are perpendicular to each other. 
 
 
 

Table 1. Performance of models of visual saliency. AUC: 
the area under the receiver operating characteristic curve 
formed by predicting fixations based on saliency. These 
results are based on ~10,000 fixations in 120 static color 
natural scenes23. 
 
 
 
 

Fig. 7. Visual saliency predicted by 
C-NonC RFs. (a), AUC predicted by 
individual C-NonC RFs. (b), The first 
10 C-NonC RFs that have the highest 
AUC shown in (a). 
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Fig. 9. ICs of 3D natural scenes. The X, Y, Z, and R components are indicated 
in the first panel. 

 

Fig. 8. Examples of 3D natural scenes. The X, Y, Z, and R components in meters are shown in color 
coding for two scenes (left and right). The horizontal axis is azimuthal angle (in degrees) and the 
horizontal axis is polar angle.   
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Five steps to compile natural scene structures (NSSs) (Fig. 10).  

1. Sample a large number of 
circular patches in a hexagon 
configuration at multiple spatial 
scales. 

2. Perform independent 
component analysis on the circular 
patches and obtain ICs at each 
spatial scale.  

3. Fit Gabor functions to the 
ICs and classify the ICs at multiple 
spatial scales into a set of clusters 
(referred to as IC clusters) using 
the parameters of the fitted Gabor 
functions as features.  

4. Map the circular patches to 
the IC clusters, compute the 
features of the circular patches, 
and pool the features of the patches 
in the hexagon configuration at 
multiple spatial scales. 

5. Partition the space of feature vectors into a set of NSSs. 

In contrast to simple features, NSSs are highly structured mid-level representations that are 
building blocks of natural scenes. Each of the NSSs contains patches of natural scenes that entails 
a specific pattern of concatenations of local features in natural scenes. Note that each of the NSSs 
shown in Fig. 11 is the average of a large number of scene patches that share the same structure.   

Fig. 10. Procedure for compiling NSSs. One spatial scale is 
shown here. 

Fig. 11. Examples of NSSs. Five 
NSSs compiled from each of the 
4 selected scenes. The locations 
of the NSSs in the scenes and the 
boxes of NSSs are indicated by 
the same color. 
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Fig. 12. Distribution of frequencies of NSSs. The 
indices of NSSs are ordered based on the occurring 
frequencies. 
 

Fig. 13. Patterns of co-
occurrences of pairs of NSSs. X-
axis: spatial separation in degrees 
of visual angle; Y-axis: logarithm 
(base=10) of normalized numbers 
of co-occurrences. 
 

Table 3. Effect of learning on scene categorization. The 
numbers in the parentheses are the numbers of images 
being tested. 50 images per category are used to train the 
model. 

Table 2. Performance of a model 
based on NSSs and other models on 
scene categorization. The dataset 
contains scenes of 8 sports.  
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Fig. 16. Natural 3D vision based on 2D-3D RFs. (a), PD of 3D reconstruction 
error. (b). Examples of reconstructed (left panel) and ground-truth 3D scene 
patches (right panel). Red/blue: far/near distance.  
 

Fig. 14. Pyramid representation 
and hierarchical Bayesian 
inference. Both 2D and 3D scenes 
are represented by pyramids and 3D 
scenes underlying 2D scenes can be 
estimated from hierarchical 2D-3D 
RFs. The arrow indicates the flow of 
inference.  
 

Fig. 15. PD of distances in 3D natural 
scenes. Probability densities of distances 
(meters) estimated by four methods, a 
mixture of log-normal distributions, a 
log-normal distribution, a gamma 
distribution, and kernel density 
estimation. 
 




